The Earths core

Jan 27, 2020
Is Earth’s core lopsided? Strange goings-on in our planet’s interior.
By Robert Sanders, Media relations| UCalBerkeley JUNE 3, 2021

PressRelase_Fig3By Robert Sanders, Media relations| JUNE 3, 2021.jpg
A new model by UC Berkeley seismologists proposes that Earth’s inner core grows faster on its east side (left) than on its west. Gravity equalizes the asymmetric growth by pushing iron crystals toward the north and south poles (arrows). This tends to align the long axis of iron crystals along the planet’s rotation axis (dashed line), explaining the different travel times for seismic waves through the inner core. (Graphic by Marine Lasbleis)

For reasons unknown, Earth’s solid-iron inner core is growing faster on one side than the other, and it has been ever since it started to freeze out from molten iron more than half a billion years ago, according to a new study by seismologists at the University of California, Berkeley.

The faster growth under Indonesia’s Banda Sea hasn’t left the core lopsided. Gravity evenly distributes the new growth — iron crystals that form as the molten iron cools — to maintain a spherical inner core that grows in radius by an average of 1 millimeter per year.

But the enhanced growth on one side suggests that something in Earth’s outer core or mantle under Indonesia is removing heat from the inner core at a faster rate than on the opposite side, under Brazil. Quicker cooling on one side would accelerate iron crystallization and inner core growth on that side.

This has implications for Earth’s magnetic field and its history, because convection in the outer core driven by release of heat from the inner core is what today drives the dynamo that generates the magnetic field that protects us from dangerous particles from the sun.

“We provide rather loose bounds on the age of the inner core — between half a billion and 1.5 billion years — that can be of help in the debate about how the magnetic field was generated prior to the existence of the solid inner core,” said Barbara Romanowicz, UC Berkeley Professor of the Graduate School in the Department of Earth and Planetary Science and emeritus director of the Berkeley Seismological Laboratory (BSL). “We know the magnetic field already existed 3 billion years ago, so other processes must have driven convection in the outer core at that time.”

The youngish age of the inner core may mean that, early in Earth’s history, the heat boiling the fluid core came from light elements separating from iron, not from crystallization of iron, which we see today.

“Debate about the age of the inner core has been going on for a long time,” said Daniel Frost, assistant project scientist at the BSL. “The complication is: If the inner core has been able to exist only for 1.5 billion years, based on what we know about how it loses heat and how hot it is, then where did the older magnetic field come from? That is where this idea of dissolved light elements that then freeze out came from.”

Asymmetric growth of the inner core explains a three-decade-old mystery — that the crystallized iron in the core seems to be preferentially aligned along the rotation axis of the earth, more so in the west than in the east, whereas one would expect the crystals to be randomly oriented.

A cut-away of Earth’s interior shows the solid iron inner core (red) slowly growing by freezing of the liquid iron outer core (orange). Seismic waves travel through the Earth’s inner core faster between the north and south poles (blue arrows) than across the equator (green arrow). The researchers concluded that this difference in seismic wave speed with direction results from a preferred alignment of the crystals — hexagonally close packed iron-nickel alloys, which are themselves anisotropic — parallel with Earth’s rotation axis. (Graphic by Daniel Frost)

Evidence for this alignment comes from measurements of the travel time of seismic waves from earthquakes through the inner core. Seismic waves travel faster in the direction of the north-south rotation axis than along the equator, an asymmetry that geologists attribute to iron crystals — which are asymmetric — having their long axes preferentially aligned along Earth’s axis.

If the core is solid crystalline iron, how do the iron crystals get oriented preferentially in one direction?

In an attempt to explain the observations, Frost and colleagues Marine Lasbleis of the Université de Nantes in France and Brian Chandler and Romanowicz of UC Berkeley created a computer model of crystal growth in the inner core that incorporates geodynamic growth models and the mineral physics of iron at high pressure and high temperature.

“The simplest model seemed a bit unusual — that the inner core is asymmetric,” Frost said. “The west side looks different from the east side all the way to the center, not just at the top of the inner core, as some have suggested. The only way we can explain that is by one side growing faster than the other.”

The model describes how asymmetric growth — about 60% higher in the east than the west — can preferentially orient iron crystals along the rotation axis, with more alignment in the west than in the east, and explain the difference in seismic wave velocity across the inner core.

“What we’re proposing in this paper is a model of lopsided solid convection in the inner core that reconciles seismic observations and plausible geodynamic boundary conditions,” Romanowicz said.

Frost, Romanowicz and their colleagues will report their findings in this week’s issue of the journal Nature Geoscience.

Earth’s interior is layered like an onion. The solid iron-nickel inner core — today 1,200 kilometers (745 miles) in radius, or about three-quarters the size of the moon — is surrounded by a fluid outer core of molten iron and nickel about 2,400 kilometers (1,500 miles) thick. The outer core is surrounded by a mantle of hot rock 2,900 kilometers (1,800 miles) thick and overlain by a thin, cool, rocky crust at the surface.

Map showing the seismometers (triangles) at which the researchers measured seismic waves from earthquakes (circles) to study Earth’s inner core. The stations colored cyan are where new measurements were made for the study, mostly sampling the inner core between the north and south poles. (UC Berkeley graphic by Daniel Frost)

Convection occurs both in the outer core, which slowly boils as heat from crystallizing iron comes out of the inner core, and in the mantle, as hotter rock moves upward to carry this heat from the center of the planet to the surface. The vigorous boiling motion in the liquid-iron outer core produces Earth’s magnetic field.

According to Frost’s computer model, which he created with the help of Lasbleis, as iron crystals grow, gravity redistributes the excess growth in the east toward the west within the inner core. That movement of crystals within the rather soft solid of the inner core — which is close to the melting point of iron at these high pressures — aligns the crystal lattice along the rotation axis of Earth to a greater degree in the west than in the east.

The model correctly predicts the researchers’ new observations about seismic wave travel times through the inner core: The anisotropy, or difference in travel times parallel and perpendicular to the rotation axis, increases with depth, and the strongest anisotropy is offset to the west from Earth’s rotation axis by about 400 kilometers (250 miles).

The model of inner core growth also provides limits on the proportion of nickel to iron in the center of the earth, Frost said. His model does not accurately reproduce seismic observations unless nickel makes up between 4% and 8% of the inner core — which is close to the proportion in metallic meteorites that once presumably were the cores of dwarf planets in our solar system. The model also tells geologists how viscous, or fluid, the inner core is.

“We suggest that the viscosity of the inner core is relatively large, an input parameter of importance to geodynamicists studying the dynamo processes in the outer core,” Romanowicz said.

Frost and Romanowicz were supported by grants from the National Science Foundation (EAR-1135452, EAR-1829283).


When Earth was formed about 4.5 billion years ago, it was a uniform ball of hot rock. Radioactive decay and leftover heat from planetary formation (the collision, accretion, and compression of space rocks) caused the ball to get even hotter. Eventually, after about 500 million years, our young planet’s temperature heated to the melting pointof iron—about 1,538° Celsius (2,800° Fahrenheit). This pivotal moment in Earth’s history is called the iron catastrophe.

The iron catastrophe allowed greater, more rapid movement of Earth’s molten, rocky material. Relatively buoyant material, such as silicates, water, and even air, stayed close to the planet’s exterior. These materials became the early mantle and crust. Droplets of iron, nickel, and other heavy metals gravitated to the center of Earth, becoming the early core. This important process is called planetary differentiation.

Earth’s core is the furnace of the geothermal gradient. The geothermal gradient measures the increase of heat and pressure in Earth’s interior. The geothermal gradient is about 25° Celsius per kilometer of depth (1° Fahrenheit per 70 feet). The primary contributors to heat in the core are the decay of radioactive elements, leftover heat from planetary formation, and heat released as the liquid outer core solidifies near its boundary with the inner core.

Unlike the mineral-rich crust and mantle, the core is made almost entirely of metal—specifically, iron and nickel*. The shorthand used for the core’s iron-nickel alloys is simply the elements’ chemical symbols—NiFe.

Elements that dissolve in iron, called siderophiles, are also found in the core. Because these elements are found much more rarely on Earth’s crust, many siderophiles are classified as “precious metals.” Siderophile elements include gold, platinum, and cobalt.

Another key element in Earth’s core is sulfur—in fact 90% of the sulfur on Earth is found in the core. The confirmed discovery of such vast amounts of sulfur helped explain a geologic mystery: If the core was primarily NiFe, why wasn’t it heavier? Geoscientists speculated that lighter elements such as oxygen or silicon might have been present. The abundance of sulfur, another relatively light element, explained the conundrum.

Geoscientists think that the iron crystals in the inner core are arranged in an “hcp” (hexagonal close-packed) pattern. The crystals align north-south, along with Earth’s axis of rotation and magnetic field.

The orientation of the crystal structure means that seismic waves—the most reliable way to study the core—travel faster when going north-south than when going east-west. Seismic waves travel four seconds faster pole-to-pole than through the Equator.

As the entire Earth slowly cools, the inner core grows by about a millimeter every year. The inner core grows as bits of the liquid outer core solidify or crystallize. Another word for this is “freezing,” although it’s important to remember that iron’s freezing point more than 1,000° Celsius (1,832° Fahrenheit).

The growth of the inner core is not uniform. It occurs in lumps and bunches, and is influenced by activity in the mantle.

Growth is more concentrated around subduction zones—regions where tectonic plates are slipping from the lithosphere into the mantle, thousands of kilometers above the core. Subducted plates draw heat from the core and cool the surrounding area, causing increased instances of solidification.

Growth is less concentrated around “superplumes” or LLSVPs. These ballooning masses of superheated mantle rock likely influence “hot spot” volcanism in the lithosphere, and contribute to a more liquid outer core.

The core will never “freeze over.” The crystallization process is very slow, and the constant radioactive decay of Earth’s interior slows it even further. Scientists estimate it would take about 91 billion years for the core to completely solidify—but the sun will burn out in a fraction of that time (about 5 billion years).

Core Hemispheres
Just like the lithosphere, the inner core is divided into eastern and western hemispheres. These hemispheres don’t melt evenly, and have distinctcrystalline structures.

The western hemisphere seems to be crystallizing more quickly than the eastern hemisphere. In fact, the eastern hemisphere of the inner core may actually be melting.

Geoscientists recently discovered that the inner core itself has a core—the inner inner core. This strange feature differs from the inner core in much the same way the inner core differs from the outer core. Scientists think that a radical geologic change about 500 million years ago caused this inner inner core to develop.

The crystals of the inner inner core are oriented east-west instead of north-south. This orientation is not aligned with either Earth’s rotational axis or magnetic field. Scientists think the iron crystals may even have a completely different structure (not hcp), or exist at a different phase.

Earth’s magnetic field is created in the swirling outer core. Magnetism in the outer core is about 50 times stronger than it is on the surface.

It might be easy to think that Earth’s magnetism is caused by the big ball of solid iron in the middle. But in the inner core, the temperature is so high the magnetism of iron is altered. Once this temperature, called the Curie point, is reached, the atoms of a substance can no longer align to a magnetic point.

Some geoscientists describe the outer core as Earth’s “geodynamo.” For a planet to have a geodynamo, it must rotate, it must have a fluid medium in its interior, the fluid must be able to conduct electricity, and it must have an internal energy supply that drives convection in the liquid. Variations in rotation, conductivity, and heat impact the magnetic field of a geodynamo. Mars, for instance, has a totally solid core and a weak magnetic field. Venus has a liquid core, but rotates too slowly to churn significant convection currents. It, too, has a weak magnetic field. Jupiter, on the other hand, has a liquid core that is constantly swirling due to the planet’s rapid rotation. Earth is the “Goldilocks” geodynamo. It rotates steadily, at a brisk 1,675 kilometers per hour (1,040 miles per hour) at the Equator. Coriolis forces, an artifact of Earth’s rotation, cause convection currents to be spiral. The liquid iron in the outer core is an excellent electrical conductor, and creates the electrical currents that drive the magnetic field. The energy supply that drives convection in the outer core is provided as droplets of liquid iron freeze onto the solid inner core. Solidification releases heat energy. This heat, in turn, makes the remaining liquid iron more buoyant. Warmer liquids spiral upward, while cooler solids spiral downward under intense pressure: convection.

Earth’s magnetic field is crucial to life on our planet. It protects the planet from the charged particles of the solar wind. Without the shield of the magnetic field, the solar wind would strip Earth’s atmosphere of the ozone layer that protects life from harmful ultraviolet radiation.

Although Earth’s magnetic field is generally stable, it fluctuates constantly. As the liquid outer core moves, for instance, it can change the location of the magnetic North and South Poles. The magnetic North Pole moves up to 64 kilometers (40 miles) every year.

Fluctuations in the core can cause Earth’s magnetic field to change even more dramatically. Geomagnetic pole reversals, for instance, happen about every 200,000 to 300,000 years. Geomagnetic pole reversals are just what they sound like: a change in the planet’s magnetic poles, so that the magnetic North and South Poles are reversed. These “pole flips” are not catastrophic—scientists have noted no real changes in plant or animal life, glacial activity, or volcanic eruptions during previous geomagnetic pole reversals.

Geoscientists cannot study the core directly. All information about the core has come from sophisticated reading of seismic data, analysis of meteorites, lab experiments with temperature and pressure, and computer modeling.

Most core research has been conducted by measuring seismic waves, the shock waves released by earthquakes at or near the surface. The velocityand frequency of seismic body waves changes with pressure, temperature, and rock composition.

In fact, seismic waves helped geoscientists identify the structure of the core itself. In the late 19th century, scientists noted a “shadow zone” deep in the Earth, where a type of body wave called an s-wave either stopped entirely or was altered. S-waves are unable to transmit through fluids or gases. The sudden “shadow” where s-waves disappeared indicated that Earth had a liquid layer.

In the 20th century, geoscientists discovered an increase in the velocity of p-waves, another type of body wave, at about 5,150 kilometers (3,200 miles) below the surface. The increase in velocity corresponded to a change from a liquid or molten medium to a solid. This proved the existence of a solid inner core.

Meteorites, space rocks that crash to Earth, also provide clues about Earth’s core. Most meteorites are fragments of asteroids, rocky bodies that orbit the sun between Mars and Jupiter. Asteroids formed about the same time, and from about the same material, as Earth. By studying iron-rich chondritemeteorites, geoscientists can get a peek into the early formation of our solar system and Earth’s early core.

In the lab, the most valuable tool for studying forces and reactions at the core is the diamond anvil cell. Diamond anvil cells use the hardest substance on Earth (diamonds) to simulate the incredibly high pressure at the core. The device uses an x-ray laser to simulate the core’s temperature. The laser is beamed through two diamonds squeezing a sample between them.

Complex computer modeling has also allowed scientists to study the core. In the 1990s, for instance, modeling beautifully illustrated the geodynamo—complete with pole flips.


* The solid iron-nickel inner core is surrounded by a fluid outer core of molten iron and nickel which matches, at least in the elements Fe and Ni, the metals now detected in the comas of a number of comets like 2I/Borisov and even in the past arrival of the the Great Comet of 1882 and C/1965 S1 (Ikeya–Seki), the latter exhibiting iron, copper and cobalt. Perhaps this shows that all the solid and semi-solid events of our solar system share a similar origin.

Its amazing that so much information and data has been collected about Earth's core considering that we, unlike the stars and planets above and beyond us, cannot see it directly. I find it incredibly interesting that the youngish age of the inner core may mean that, early in Earth's history, the heat boiling the fluid core came from light elements separating from iron, not from the crystallization of iron, which we see today.
Last edited:
  • Like
Reactions: Marjorie Allworth