NASA Missions Detect Stunning Meteoroid Impact on Mars

Jan 27, 2020
457
113
1,880
On Dec. 24, 2021, our InSight Mars lander recorded a significant marsquake on the Red Planet. Only later did scientists discover the cause of the shaking: a meteoroid strike estimated to be one of the biggest seen on Mars since NASA began exploring the cosmos.

What’s more, the meteoroid’s impact kicked up boulder-size chunks of water ice buried beneath the Martian surface–a discovery with big implications for NASA’s plans to send future astronauts to the Red Planet.

Data and images from two NASA spacecraft contributed to the discovery. InSight’s seismometer “heard” the quake that resulted from the meteoroid’s impact when it occurred last December, and the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter “saw” the new crater from orbit in February.

mars ice meteoroid.jpeg

Subsurface ice will be a vital resource for future human explorers, who could use it for a variety of needs, including drinking water, agriculture, and rocket propellant. Buried ice has never been spotted this close to the Martian equator, which, as the warmest part of Mars, is an appealing location for astronauts.

“It’s unprecedented to find a fresh impact of this size,” said Ingrid Daubar, a planetary scientist who leads InSight’s Impact Science Working Group. “It’s an exciting moment in geologic history, and we got to witness it.”

mars ice 2.jpeg
Boulder-size blocks of water ice can be seen around the rim of an impact crater on Mars, as viewed by the High-Resolution Imaging Science Experiment (HiRISE camera) aboard NASA’s Mars Reconnaissance Orbiter. The crater was formed Dec. 24, 2021, by a meteoroid strike in the Amazonis Planitia region.
Credits: NASA/JPL-Caltech/University of Arizona


Scientists determined the quake resulted from a meteoroid impact when they looked at before-and-after images from NASA’s Mars Reconnaissance Orbiter (MRO) and spotted a new, yawning crater. Offering a rare opportunity to see how a large impact shook the ground on Mars, the event and its effects are detailed in two papers published Thursday, Oct. 27, in the journal Science.

The meteoroid is estimated to have spanned 16 to 39 feet (5 to 12 meters) – small enough that it would have burned up in Earth’s atmosphere, but not in Mars’ thin atmosphere, which is just 1% as dense as our planet’s. The impact, in a region called Amazonis Planitia, blasted a crater roughly 492 feet (150 meters) across and 70 feet (21 meters) deep. Some of the ejecta thrown by the impact flew as far as 23 miles (37 kilometers) away.

With images and seismic data documenting the event, this is believed to be one of the largest craters ever witnessed forming any place in the solar system. Many larger craters exist on the Red Planet, but they are significantly older and predate any Mars mission.

“It’s unprecedented to find a fresh impact of this size,” said Ingrid Daubar of Brown University, who leads InSight’s Impact Science Working Group. “It’s an exciting moment in geologic history, and we got to witness it.”

InSight has seen its power drastically decline in recent months due to dust settling on its solar panels. The spacecraft now is expected to shut down within the next six weeks, bringing the mission’s science to an end.

mars impact.jpeg
This meteoroid impact crater on Mars was discovered using the black-and-white Context Camera aboard NASA’s Mars Reconnaissance Orbiter. The Context Camera took these before-and-after images of the impact, which occurred on Dec. 24, 2021, in a region of Mars called Amazonis Planitia.
Credits: NASA/JPL-Caltech/MSSS


InSight is studying the planet’s crust, mantle, and core. Seismic waves are key to the mission and have revealed the size, depth, and composition of Mars’ inner layers. Since landing in November 2018, InSight has detected 1,318 marsquakes, including several caused by smaller meteoroid impacts.

But the quake resulting from last December’s impact was the first observed to have surface waves – a kind of seismic wave that ripples along the top of a planet’s crust. The second of the two Science papers related to the big impact describes how scientists use these waves to study the structure of Mars’ crust.

See the youtube sounds of the Martian impact:
View: https://youtu.be/17hsIedHKx8


In late 2021, InSight scientists reported to the rest of the team they had detected a major marsquake on Dec. 24. The crater was first spotted on Feb. 11, 2022, by scientists working at Malin Space Science Systems (MSSS), which built and operates two cameras aboard MRO. The Context Camera (CTX) provides black-and-white, medium-resolution images, while the Mars Color Imager (MARCI) produces daily maps of the entire planet, allowing scientists to track large-scale weather changes like the recent regional dust storm that further diminished InSight’s solar power.

The impact’s blast zone was visible in MARCI data that allowed the team to pin down a 24-hour period within which the impact occurred. These observations correlated with the seismic epicenter, conclusively demonstrating that a meteoroid impact caused the large Dec. 24 marsquake.

“The image of the impact was unlike any I had seen before, with the massive crater, the exposed ice, and the dramatic blast zone preserved in the Martian dust,” said Liliya Posiolova, who leads the Orbital Science and Operations Group at MSSS. “I couldn’t help but imagine what it must have been like to witness the impact, the atmospheric blast, and debris ejected miles downrange.”

Establishing the rate at which craters appear on Mars is critical for refining the planet’s geologic timeline. On older surfaces, such as those of Mars and our Moon, there are more craters than on Earth; on our planet, the processes of erosion and plate tectonics erase older features from the surface.

New craters also expose materials below the surface. In this case, large chunks of ice scattered by the impact were viewed by MRO’s High-Resolution Imaging Science Experiment (HiRISE) color camera.

Subsurface ice will be a vital resource for astronauts, who could use it for a variety of needs, including drinking water, agriculture, and rocket propellant*. Buried ice has never been spotted this close to the Martian equator, which, as the warmest part of Mars, is an appealing location for astronauts.

JPL manages InSight and the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the Mars Reconnaissance Orbiter, InSight spacecraft (including its cruise stage and lander), and supports spacecraft operations for both missions.

Malin Space Science Systems in San Diego built and operates the Context Camera and MARCI camera. University of Arizona built and operates the HiRISE camera.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors, and the Italian Space Agency (ASI) supplied a passive laser retroreflector.

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Erin Morton
NASA Headquarters, Washington
301-286-6284 / 202-805-9393
karen.c.fox@nasa.gov / erin.morton@nasa.gov

2022-163
Last Updated: Oct 27, 2022
Editor: Tony Greicius

See: ASA<hq-newsletter@nasa.gov>

See: https://www.nasa.gov/feature/jpl/nasa-s-insight-lander-detects-stunning-meteoroid-impact-on-mars

* rocket propellant - The basic methods for hydrogen production, where hydrogen is a key component in propellant, though, have remained the same at their core, and everything is now innovated around the same old principles.

1. Electrolysis
Electrolysis is the technical name for using electricity to split water into its constituent elements, hydrogen and oxygen. The splitting of water is accomplished by passing an electric current through water. The electricity enters the water at the cathode, a negatively charged terminal, passes through the water and exists via the anode, the positively charged terminal. The hydrogen is collected at the cathode and the oxygen is collected at the anode. Electrolysis produces very pure hydrogen from water for use in the electronics, pharmaceutical and food industries.

Relative to steam reforming, electrolysis is very expensive. The electrical inputs required to split the water into hydrogen and oxygen account for about 80% of the cost of hydrogen generation. Potentially, electrolysis, when coupled with a renewable energy source, can provide a completely clean and renewable source of energy. In other circumstances, electrolysis can couple with hydroelectric or off-peak electricity to reduce the cost of electrolysis.

2. Photoelectrolysis
Photoelectrolysis, known as the hydrogen holy grail in some circles, is the direct conversion of sunlight into electricity. Photovoltaics, semiconductors and an electrolyzer are combined to create a device that generates hydrogen from water.

The photoelectrolyzer is placed in water and when exposed to sunlight begins to generate hydrogen. The photovoltaics and the semiconductor combine to generate enough electricity from the sunlight to power the electrolyzer. The hydrogen is then collected and stored. Much of the research in this field takes place in Golden, Colorado at the National Renewable Energy Laboratory.

3. Photobiological
Photobiological production of hydrogen involves using sunlight, a biological component, catalysts and an engineered system. Specific organisms, algae and bacteria, produce hydrogen as a byproduct of their metabolic processes. These organisms generally live in aqueous environments and therefore are extracting the hydrogen from water using their biological functions.

Currently, this technology is still in the research and development stage and the theoretical sunlight conversion efficiencies have been estimated up to 24%. Over 400 strains of primitive plants capable of producing hydrogen have been identified, with 25 impressively achieving carbon monoxide to hydrogen conversion efficiencies of 100%.

In one example, researchers have discovered that the alga, Chlamydomonas reinhardtii, possesses an enzyme called hydrogenase that is capable of splitting water into its component parts of hydrogen and oxygen. The researchers have determined the mechanism for starting and stopping this process, which could lead to an almost limitless method for producing clean, renewable hydrogen.

The algae need sulfur to grow and photosynthesize. Scientists found that when they starved the algae of sulfur, in an oxygen-free environment, the algae reverted to a hydrogenase-utilizing mode. This mechanism of producing hydrogen from water has developed over millions of years of evolution for survival in oxygen-rich and oxygen-free environments. Once in this cycle, the algae released hydrogen, not oxygen. Further research is necessary to improve the efficiencies of the engineered plant systems, collection methods and the costs of hydrogen generation.

See: https://www.greenoptimistic.com/hydrogen-from-water/

Seeing the photos of the Martian meteoroid impact gives us a tantalising view and estimate of the amount of subsurface water ice to be found on Mars. This ice will provide drinking water, critical components for agriculture, and rocket propellant, all necessary for future Martian exploration and the fuel needed to return specimens to Earth.
Hartmann352
 

ASK THE COMMUNITY