Experimental research of flapping flight, unexplored aerodynamics phenomenon and the question of the effectiveness of a flying saucer

Oct 18, 2020
Visit site

Kandyba Pavel Yurievich


As a result of experiments with the motion of asymmetrically oscillating bodies in a viscous medium, it was found that the generally accepted idea of such a principle of motion is not correct. A description of the experiments and the observed effect is given, as well as its interpretation.


As a result of experiments with the motion of asmmetscillating bodies in a viscous medium, it was found that the generally accepted idea of such a principle of motion is not correct. A description of the experiments and the observed effect is given, as well as its interpretation.

UDC 533.664


The purpose of this article is to draw attention to a little-studied phenomenon in the field of aerodynamics, a more detailed study of which, in the author's opinion, will give a significant impetus to the development of the aerospace field. Now 4 basic principles of engines are used: screw; reactive; using air currents as a driving force; using light gas. All of these principles have their advantages and disadvantages, and their combination often leads to a decrease in overall performance. New types of engines, the principles of which are based on theoretical research, have not been found, and their searches have created a lot of pseudoscientific ideas. And at the same time in nature there is the most perfect form of flight, which man has not mastered to the end. This is a flapping flight, which, as the reader will be convinced, is a synthesis of the above flight methods.


To date, research is underway in different countries of the world with the aim of using the principle of flapping flight for practical purposes. There are some robotic models that have flapping wings, but they are inferior in efficiency to classical aircraft. Their resource is significantly limited by the complexity of the design, which does not allow them to realize high power. Nevertheless, for many years there has been a technical solution to this issue that has remained on paper - vibrating flight.

Goals and objectives

The author carried out experimental work, the purpose of which was to study the method of motion in a homogeneous medium by means of asymmetric oscillations. He created mock-ups of aircraft with vibrating wings, and carried out a series of tests in which their characteristics were investigated. The author found that the results of his experiments did not correspond to the generally accepted scientific theory of the motion of such devices.

Classic description of the principle

To begin with, consider the generally accepted theories of motion in a viscous medium of asymmetrically vibrating bodies. The most famous of them is the explanation of the principle of motion of an inertion propulsion drive in a liquid:

The principle of operation of inertion propulsion drive lies in the fact that their purposeful movement is caused by the difference in the resistance force during the forward and reverse half-cycle of work. With dry friction, the resistance to slow movement exceeds the resistance to fast movement (in one half cycle, when a small force is applied, the static friction force is not overcome and the apparatus remains in place; in the reverse half cycle, the friction force is overcome, the apparatus moves). In liquids, on the contrary, resistance to fast movement prevails over resistance to slow movement. The explanation of the effect in liquids is fundamentally different (since there is no static friction force in liquids and gases) and is based on viscous friction forces.

The description of the principle of movement in air, the same as the movement of an inertioid in a liquid medium, has a vibrating flight:

To get an idea of the mechanism of the appearance of the thrust force, let us first consider the appearance of the thrust force when the plate moves in the same medium with different speeds of forward and reverse strokes.

The thrust force in different modes of forward and reverse motion in the same medium of movement arises due to the following two effects.

1) Nonlinear dependence of the resistance of the medium to the displacement of the propeller on its speed and its derivatives - even for a symmetrically executed propeller (for example, a round plate moving along the normal). Due to the different modes of forward and reverse strokes, the average resistance force will not be zero and can reach a value sufficient for the movement. When the propeller moves in a working stroke at a speed 10 times higher than the idle speed, the efficiency of the propeller, i.e. the ratio of the energy used by the mover to the energy received by the mover can reach a value approaching 90%.

2) The asymmetry of the propulsion unit relative to the plane perpendicular to the direction of motion can lead to the fact that a tractive effort arises even when the speeds of the straight about and reverse moves. This effect - the dependence of the drag on the shape of the body and with its asymmetry on the direction of motion - is well known in aerodynamics.

Experimental observation of the phenomenon

If the effect caused by the difference in resistances during symmetric oscillations of an asymmetric body does not raise any doubts, then in relation to asymmetrically oscillating symmetric bodies, the experiment shows the exact opposite of the theory - the movement occurs in the direction of a fast jerk, and not a slow one. This is clearly demonstrated by the simplest experiment: we lower a straight palm into the water, make a quick movement in one direction, slow in the other, and in the opposite movement we feel much more resistance than we would expect. The following happens - when we push the water forward, a rarefied medium forms behind the palm, and its subsequent collapse creates pressure. This is explained by the work of the forces of repulsion and attraction of water molecules, Brownian motion, which becomes directional in a catching turbulent vortex.

Thus, the classic example with a barge and a car has the following description: the ship is displaced relative to the center of mass, the resistance of the water pushes it back slightly, and then, after some time, the current caused by the displacement of the ship pushes it towards this displacement. Equally, with asymmetric vibrations of a symmetric body, and with symmetric vibrations of an asymmetric body, the movement of the medium occurs according to the same principle.

Similar phenomena are well known in aerodynamics. With a sharp descent of the helicopter, a subsequent uncontrolled loss of altitude occurs as a result of the formation of an annular vortex caused by the downward movement of the air mass, which, while descending, was pushed by the helicopter. Another example is the "cobra" maneuver, in which the fighter suddenly lifts its nose, which causes an updraft below it, allowing it to sharply slow down and seem to hover in place.


1. Hydrodynamic testing of boat models with vibration motors.

To study the phenomenon, a mechanism was made, with a principle similar to the inertion propulsion drive of V.N. Tolchin, with the difference that the acceleration and deceleration of the pendulums was carried out not by a spring, but by magnets. In some cases, for simplicity, only one pendulum was used, and the torque was compensated by the support. First, the engine was installed on a boat with a symmetrical hydrodynamic profile, and during the experiment it was seen that its movement in the water is in the direction of fast jerks. Then the engine was installed on a boat with an asymmetric profile, more streamlined in the front and less streamlined in the rear. In this case, the asymmetry of the oscillations was eliminated. During the experiment, no obvious movement was observed, probably due to the relatively small asymmetry of the profile. Further, the vibrations were made asymmetric so that the boat made quick jerks in the direction in which the streamlining is greater, and this allowed it to move in that direction.

During the experiment, the formation of waves of different lengths, created by the vibrating hull of the boat, was observed - short weak waves propagated in the direction of movement, forward, and long stronger ones behind in the opposite direction In some cases, in particular when a boat with a symmetrical profile is moving, performing asymmetric oscillations at a high frequency, at which the wavelength is much less than the length of the boat, it was observed that the movement occurs at intervals of large oscillation frequencies. This is probably due to the accumulation of wave energy. In the immediate vicinity of the boat to the walls of the container with water, the achieved effect decreased. The hull of the boat adhered to the walls, similar to the convergence of nearby ships, which was overcome by direct repulsion of the hull from the walls. This allows us to describe this principle of movement as a wave. The formation of these waves by the example of a single jerk is as follows: with a fast jerk, a certain mass of water receives an impulse and begins to move in the direction of the impact according to the principle of an annular vortex, which is observed as a surface wave. In this case, a low pressure zone forms behind the boat, which, when filled, takes the energy of this wave in the process of flowing around, which creates turbulence. Water molecules under the action of their own forces of repulsion and attraction with acceleration rush into the zone of reduced pressure, and something like the collapse of a cavitation bubble or the explosion of a vacuum bomb occurs. The collapse energy pushes the boat from behind, and, reflected from it, forms a backward wave. Accordingly, with a slow jerk of the boat backward, as a result of these interactions, a weak forward wave is formed.

In some cases, in particular when a boat with a symmetrical profile is moving, performing asymmetric oscillations at a high frequency, at which the wavelength is much less than the length of the boat, it was observed that the movement occurs at intervals of large oscillation frequencies. This is probably due to the accumulation of wave energy. In the immediate vicinity of the boat to the walls of the container with water, the achieved effect decreased. The hull of the boat adhered to the walls, similar to the convergence of nearby ships, which was overcome by direct repulsion of the hull from the walls.


Figure: 1. Boat with an asymmetric vibration motor in motion.

2. Tests of models of vibrating flights in free fall.

To establish that the resulting motion was caused not by the differences in the heights of the surface waves, but by the difference in pressure, experiments were carried out in air. A lightweight asymmetric vibration motor was manufactured, which It was a motor with an eccentric that makes half a turn with acceleration and a half turn with a deceleration, which was carried out by a magnet rigidly attached to the body, acting on the eccentric. The engine was mounted on a disk-shaped wing with a symmetrical airfoil (Fig. 2). Difficulties in detecting the presence of engine thrust were that fixing the result with the help of weights would lead to the fact that the scales would become a fulcrum during repulsion, and, not having time to respond to changes in weight, could show its decrease as an average result even when jumping them an engine without a wing. One of the features of inercioids is that, pushing off straight and nonlinearly, they use everything that prevents their oscillations as a fulcrum. This is probably the reason for the emergence of pseudoscientific prejudices regarding this type of engine.

It was decided to test the model in free fall. But even in this case, the measurement of the falling speed turned out to be impossible for the reason that when the maximum falling speed was reached, this structure turned over or shifted relative to the vertical from the excess pressure and then fell faster. Therefore, the following test method was applied. The maximum height from which the model fell without overturning and displacement was determined (about 1.5 m), and then the model was thrown from the same height with the engine running. When the operating model fell, there was a noticeable displacement from the vertical and subsequent overturning already at a height of about 0.5 m.

The torque generated by the engine has been taken into account. To compensate for this, a similar engine with the opposite torque was not used due to the complexity of synchronization and the increase in weight. A feature of the design of the engine was its self-winding in the direction of rotation as a result of the influence of the accelerating and decelerating magnet on the eccentric. At the same time, the eccentric, approaching the magnet, accelerated, and created a fast impulse with pressure on the axis in the opposite direction, forcing the engine to spin slightly in the opposite direction of rotation, and passing by the magnet, slowed down, creating a slow reverse impulse and attracting the magnet after it, forcing the engine more noticeably scroll in the direction of rotation. This self-winding was not strong, and was largely compensated by the aerodynamic plane. In most cases, the flip direction of the model did not correspond to this torque, and depended primarily on other factors, such as accidental tilt at the beginning of the fall, curvature of the plane, uneven weight distribution and application of force.


Fig. 2. Vibrating flight model with a symmetrical aerodynamic wing profile.

Later, an improved engine with a vertical axis of rotation was made, which eliminated the overturning reactive moment, and created a gyroscopic effect to maintain the horizontal position of the model in flight. The design of the engine consisted in the fact that a rotor with magnets rotated over magnets mounted on a movable aerodynamic plane, mounted on springs. The alignment of the magnets forced them, attracting, to raise the plane. As the magnets approached, the rotor would accelerate, and slow down as the magnets moved away. Therefore, the plane moved faster up and slower down. It was not possible to completely eliminate overturning, but when the engine was turned on, the tendency to it decreased, and the tendency to horizontal displacement increased under the same experimental conditions.

To take into account the ground effect, the height of the fall was increased, and in this case, the rollover occurred approximately after passing the same distance of 1 m. Due to the lack of accurate measuring instruments, it was difficult to judge the presence of the ground effect. But, apparently, he had to exert influence, creating additional support for repulsion at a certain distance to the ground. Also, when throwing from a height of 1 m, in which the model did not have time to roll over, it was noticed that at the minimum distance from the ground, the fall sharply accelerates, probably due to a violation of air circulation.

3. Visualization of the air flow.

In order to establish that the air circulates exactly as described earlier, the following experiments were carried out. A tape was attached to the edge of the plate indicating the direction of the air flow. The plate was lifted up perpendicular to the plane, and during the ascent the tape was pulled under the plate into the turbulence zone, and after stopping the plate at the upper lifting point it took a horizontal position on the outside of the plate, parallel to its plane. This suggests that after the plate stops, an ascending air flow continues to exist under it, striking its lower part, and being reflected, distributed to the sides.

Next, a simple installation was assembled with an electromagnetic linear motor and an asymmetric aerodynamic plane in the form of a cone with a low top, making a vertical vibrations perpendicular to its plane. The installation was connected to a frequency generator. A smoke source was located under the plane, closer to its edge. The smoke naturally rose up, partially flowed around the edge of the plane, and rose further. When the installation was switched on to the mode of symmetric oscillations, the following happened: when the plane was raised, the smoke was completely drawn under it, forming a turbulent vortex, and when lowering, it was thrown out to the side horizontally, also in the form of a vortex. It should be noted that this happened only at the optimum vibration frequency, at which the amplitude was maximum. For this setup, the maximum amplitude was about 2 mm at a frequency of 18 Hertz. The diameter of the plane was about 5 cm. With a significant increase in frequency, the movement of smoke became the same as without turning on the engine, but at the same time, the presence of acoustic waves of the same length was visually observed in it both from above and below. Apparently, in order to achieve the maximum effect, it is necessary to take into account the optimal vibration mode.
Next, a single lift of the plate was studied, that is, a symmetrical airfoil completely surrounded by smoke. During the ascent of the plate perpendicular to the plane, a turbulence zone is formed under it in the form of an annular vortex with an upward flow in the center, which repeats the shape of a nuclear fungus (Fig. 3). When the plate stops at the top point, the annular vortex catches up with it and flows around it, continuing to move upward by inertia. In this case, the vortex turns into a thin ring, increasing in diameter, and eventually collapsing in the space above the plate (Fig. 4). The upward flow in the center of the vortex hits the bottom of the plate, and, being reflected to the sides, makes the vortex expand as it flows around the plate (Fig. 4). Since the plate takes energy from the moving air mass, the vortex collapses around the plate. That is, a single upward jerk of the plate perpendicular to the plane creates an air flow pushing the plate after it stops. If the reverse motion of the plate has a lower speed, and the energy of the flow created by it is less, the resulting force will be lifting.


Figure: 3 and fig. 4. Annular vortex during plate movement (left) and vortex flow around the plate after stopping (right).

Further, a single rise in the smoke of an asymmetric aerodynamic profile in the form of a hemisphere with a large streamlining in the direction of travel was studied. During the rise of the hemisphere, a process is observed, the same as the rise of the plate - an annular vortex with an upward flow resembling a mushroom. And when the hemisphere stops at the top point, the flow hitting it from below is reflected not to the sides, as in the case of the plate, but downward, which is facilitated by the shape of the hemisphere. In many ways, this resembles a jet stream flowing from a rocket nozzle. You can see these processes using the simplest experiments - dangling a mug in a bucket of water or a spoon in soup.

In addition, the movement of air during the operation of the acoustic speaker membrane was studied using smoke. Air access was only to the front side of the membrane, and to the back was limited. For the experiment, an ordinary smartphone with a sound generator and a cigarette as a source of smoke were used. When the speaker was operating in a wide range of ultrasonic frequencies, the ambient air was drawn to the speaker on the sides and fired with a jet stream from its center.

3. Testing of models of vibrating flights in flight after initial acceleration.

To explore this effect in free flight after the initial acceleration, several models were created in the form of "flying saucers" with different aerodynamic profiles and types of vibration motors (Fig. 5 and 6). In these experiments, it was not possible to obtain an accurate visual result in view of the multiple extraneous factors affecting the flight and the instability of the apparatus. Eliminating these factors would be possible under laboratory conditions.


Figure: 5 and 6. Flying saucer with a vibration motor in flight. Left: The reflection of light creates an optical effect similar to lights at the edge, probably due to vibration. Right: The blurring of the photo due to vibration creates the illusion of a distorted form.

In the course of these experiments, it was found that a "flying saucer" with a convex profile at the top, or resembling two rear halves of an aircraft wing laminar profile joined together (Fig. 7), can receive a very significant increase in lift from the wind, provided there is a force that holds in a horizontal position. Thrown like a frisbee, but with little force and a strong twist for stability, during the gusts of wind, it abruptly changed its trajectory, gaining altitude until the rotation stopped maintaining its stability. Thus, it was impossible to judge the efficiency of the engine.


Figure: 7. Flying saucer with a laminar wing profile.

To simplify the experiment and obtain a more visual result, a simple asymmetric vibration motor was installed on the flying wing glider at the center of gravity. During his work, he created fast jerks up and slow down, but the lack of the necessary conditions for the experiment did not allow obtaining an accurate result. Apparently, the operation of the engine led to pitching - the glider periodically gained altitude and slowed down.

For greater clarity of the experiment, a glider was made in the form of a wing in the shape of a crescent (Fig. 8), the center of gravity of which, and accordingly the engine, were at the very nose. Thus, the characteristics of the airframe with a small initial acceleration were similar to those of a projectile with plumage. This made it possible to aim it at a small distance with minor differences in launch conditions, since at this distance, about 5 m, it flew almost along a ballistic trajectory. As a result of these modifications, it became possible to visually observe significant changes in the flight path.

The flight trajectory with the engine on was significantly different from the trajectory of the control flight with the engine off, which far exceeded the possible launch errors. The glider covered the first 2-3 meters along the initially specified ballistic trajectory, but, as the air resistance grew, the engine began to perceive it as a support. This allowed him to push off, as if bouncing on a hard surface. As a result, the amplitude of the leading edge oscillations increased, and the engine vibration frequency decreased. A similar dependence of amplitude and frequency on resistance is also valid for the previously described hydrodynamic models and "flying saucers". (The motion of the hydrodynamic model led to a decrease in the clock rate up to the complete sticking of the pendulums opposite the magnet.)

Asymmetric oscillations of the leading edge of the wing of the crescent-shaped model led to a sharp lifting of the nose, up to reaching critical angles of attack and hovering in place, followed by falling down like a stone. If the height of the fall was sufficient, the newly increased resistance allowed the engine to start working, and the model suddenly went out of the dive. This was significantly different from the control flight along the ballistic trajectory, even with an error of several meters.


Figure: 8. A model aircraft with a vibration motor reaches a critical angle of attack.

Experimental results

The direction of motion of asymmetrically oscillating bodies in a viscous medium established in the experiment is directly opposite to the direction described in the sources known to the author. The efficiency of this principle of movement directly depends on the resistance of the medium, and increases in proportion to its growth, and if the optimal modes are observed, energy accumulation is possible. The limiting factor that makes the "perpetuum mobile" impossible in this case is the engine power, since when the critical resistance is reached, the ability to overcome it disappears.

Model of the possible cause of the formation of an annular vortex and the motion of asymmetrically vibrating bodies towards a fast jerk

Let us consider the proposed model of the occurrence of this phenomenon based on geometric patterns. Imagine a conditional homogeneous viscous medium, liquid or gas, in a state of absolute rest in the form of equidistant particles, which are in this position due to the equilibrium of the forces of attraction and repulsion between them. In a plane section, connecting these particles with conventional lines, we get a lattice consisting of equilateral triangles. This is the only structure in which the points can be equidistant (Fig. 9).


Figure: 9. Vortex model.

Suppose this lattice has a certain elasticity, which allows it to generate a force similar to the surface tension of water. This is the force of resistance of the given environment. Let's place an object in this environment. Let it be particle number one. Imagine that this object is displaced relative to its center of mass, making a single jerk along the path of least resistance between two particles numbered 2, but the force of its jerk does not exceed the force of the particle that binds together. Then it will create some tension in the lattice, which will propagate in the form of a wave, supported by the energy of the forces of repulsion and attraction of particles with a limited speed inherent in this environment. Having transmitted the impulse imparted by object 1 further, the particles will return to their original position under the action of their own forces, and, accordingly, will push the object back to its original position. Let us assume this is the resistance force that pushes back the barge with the car mentioned at the beginning.

And now suppose that the force of the jerk when the object 1 is displaced relative to the center of mass exceeds the binding force of the particles 2. Then the particles, thanks to the momentum they received, sequentially begin to move along a given trajectory, and simultaneously along the path of least resistance. If they were billiard balls, the momentum would be divided by 2 each time, and, in the end, dissipated. But if we take into account that the particles have their own energy, which makes it possible to transfer the energy of the pulse through waves, we get a chain reaction, thanks to which the pulse can travel a considerable distance without significant losses. If we lay down a logical path of impulse transmission, and enumerate each stage, we get that already at the count of 6 this impulse will return to the starting point in two ways, along trajectories resembling an eight, and will be communicated to the object that created it 1 from behind. Thus, object 1, having moved forward relative to the center of mass, will receive a force pushing it from behind.

It is worth noting that particles from behind will immediately rush into the zone of reduced pressure formed due to the displacement of object 1, since the repulsive forces of other particles will act on them. From them, the leg of the previously described mushroom is formed. Therefore, the collapse of this cavity when all the particles meet will have a certain excess energy, the manifestation of which can be observed during the explosion of a vacuum bomb.

The resulting trajectory in the form of a figure eight is consistent with the observed phenomenon - the dynamics of an annular vortex in the section. The particles alternately transfer momentum to each other and fall into a closed circle, which explains the long existence of the vortex. It is precisely the harmonious organization of chaotic Brownian motion that is the energy that feeds the vortex.

If we trace the propagation of the pulse further, we will see a pattern due to which the particles form smooth fronts. These are waves caused by a single displacement of object 1. Object 1 itself will move pushed by the particles that form a figure eight or the top of the mushroom, slowing down as their energy dissipates. This is viscous friction, thermal energy, which moves the object that has brought it out of equilibrium in the direction of this impulse. This makes us think about the meaning of the expression "everything comes back" from the standpoint of logic and common sense.

Model compliance with known phenomena

Let's consider this model using the example of the lift force of an airplane wing. It is generally accepted that the movement of a wing through the air is continuous. But we also know that this movement is always associated with vibration, which ultimately leads to flutter and the destruction of the wing. And we also know that turbulence has a rhythm of vortex formation and destruction. By the example of an aircraft overcoming the sound barrier (Fig. 10), or the outflow of a jet stream from a nozzle, one can see that the movement of gases has a rhythmic, wave character. This is due to the cyclic rarefaction and collapse of the medium. The resonance of the structure with these cycles is the cause of the vibrations that occur during the movement of the wing.


Figure: 10. Shock waves when breaking the sound barrier and cavitation as a result of filling the space behind them with air.

Having singled out one such cycle from the general rhythm, we can say that the wing with its front part imparts an impulse to the air in the forward upward direction, pushing it above itself. As a result, a region of reduced pressure is formed above the wing, the collapse of which occurs in the direction of the pulse. Due to the fact that the wing is on the path of the air rushing into the rarefaction above it, it receives an impulse directed forward upward. The laminar profile is faster because the inclination of its rear lower plane allows the impulse to collapse the cavity to push the wing in the direction of flight.

Since the rhythm of these cycles is not taken into account when the wing moves, in other words, the wing does not stop to wait for the energy that overtakes it, a significant part of it remains behind the aircraft, and can affect other aircraft. It has long been known that wedge-flying birds use this energy.

A vortex, similar to an annular vortex in the section, is also present when air flows around the wing (Fig. 11). One part of it is well known in aerodynamics. This is a vortex following at some distance from the trailing edge of the wing. The other counter-rotating part is located directly at the trailing edge of the wing, in a small turbulent zone. This part has a very small diameter, since it is compressed, and at the same time significant energy is concentrated in it, due to which the destruction of the wing at high speed begins from the trailing edge. When a compressed vortex at the trailing edge breaks off the wingtip, it expands in size and forms a turbulence zone behind the aircraft.

Between these two vortices, air moves under the wing from the space above it, as evidenced by the circulation of the boundary layer around the wing. Boundary layer air above the top surface bends around the trailing edge and enters under the wing. Therefore, the mushroom, like an annular vortex, has an asymmetric, curved arc, in which the leg is bent upward. The air injected under the wing moves against the flight in the boundary layer, and is the cause of the counterflow at the leading edge of the wing. Because of this, the stream of smoke in the aerodynamic tube seeks to bypass the wing from above to the last, even when it is displaced to the very bottom.

At critical angles of attack, when the flow stalls, the compressed vortex from the trailing edge moves into the space above the wing and increases in size. Then the flow that builds up pressure under the wing moves behind it and begins to put pressure on the upper part of the wing. In this case, the wing no longer creates lift and only provides frontal resistance to the fall.


Figure: 11. A vortex generating wing lift and stall (bottom).

The proposed model can also be considered on the example of a bird's flight. The generally accepted opinion is that a bird, with a flap of its wings, spreads its feathers and feels less air resistance, and when lowering its wings, it connects the feathers and, thus, feeling more resistance, is repelled. This statement was the basis for the famous flying umbrella aircraft built in the early 20th century. The umbrella had flaps that let air in when moving up, and closed when moving down. In accordance with the proposed model, this led to the emergence of a force pressing to the ground, which was somewhat reduced by opening the valves when the umbrella was lifted.

The principle of bird flight in accordance with this model is as follows: bird feathers on the wings have an S-shaped profile and work as vortex generators. By flapping its wings and spreading feathers, the bird not only reduces resistance, but also generates an annular vortex with an upward flow, relying on which it repels, lowering its wings. The flight of insects can be described in a similar way.

The vortex has a quasi-crystalline structure and has the properties of a solid. Thus, it is like a solid object formed from the environment that can be thrown away as a reactive mass before it collapses.

An example of a jet propulsion that is best suited for a flying saucer is the jellyfish. It is generally accepted that a jellyfish, shrinking, throws out a jet stream, and this sets it in motion. This is true, but it requires a certain addition. After the jellyfish has ejected the jet stream, it needs to refill the dome, which requires a certain amount of energy. The jellyfish takes this energy from the environment. When a jet stream is thrown out and the jellyfish begins to move forward, with its frontal resistance it creates a wave, followed by a catching ring vortex behind the jellyfish. When the energy of the jet pulse is exhausted and the jellyfish slows down, the flow in the ring vortex that has caught up with it fills it, straightening the dome. Medusa simply allows the vortex to push and flow around itself, completely repeating its shape (Fig. 12) and without making any special efforts. When the energy of the vortex is depleted, the jellyfish contracts again, starting a new cycle. We will see the same if we put an asymmetric linear motor on a very flexible plate.

A special resemblance of the jellyfish to the tested models of "flying saucers" is that it very often flips over from excessive pressure. Replacing the complex movements of the jellyfish with simple oscillations of the aerodynamic profile, we will lose its energy efficiency, but we will get the absolute simplicity and universality of the principle of movement using the environment as a jet fuel.


Figure: 12. Medusa repeats the shape of an annular vortex.


In theory, the method of motion by asymmetric vibrations is suitable for any medium in which vortices and pressure waves can be created. According to the author, based on modern technologies, it is quite possible to build:

1) An ultralight air sailboat that will be driven by a low-power engine and held in the air like soaring birds.

2) An improved solar sail craft. In view of the fact that an asymmetric vibration motor (inertioid) has the ability to push off straight and nonlinearly, having a minimum resistance to the support, the solar wind pressure will be enough to achieve the effect.

3) A descent spacecraft with increased controllability, which will be able to use the resistance of the environment during descent for maneuvers and soft landing.

The idea of this method as a wave method indicates the probable possibility of using it in space as a vacuum jet engine. It is still too early to talk about a real flying saucer as they are presented. The difficulty lies in the fact that the strength and power characteristics required to create a full-fledged apparatus that surpasses modern jet aircraft in all respects are prohibitive. For example, the body and the moving part of such an aircraft must be 3D printed monolithic from heat-resistant and hard metal. Now such technologies are only at the initial stage of development, but you can start thinking about it today.


Figure: 13. Different models of aircraft with vibration motors.

Experiment video:

View: https://youtu.be/IyzIT2atqw0

View: https://youtu.be/aCAFfisXYa4


1. Wikipedia: Inercioids [Electronic resource] - access mode: https://ru.wikipedia.org/wiki/Инерцо% D0% B8% D0% B4% D1% 8B (date accessed: 09/07/2020)
2. Lozovsky L.A., Lozovsky A.L., Khokhlushkina F.A. The method of movement of the vehicle and the universal device "vibrating flight" for its implementation // RF Patent No. 2147786, 1998.10.08
3. Damn E. Physics for a flying saucer or quantum theory of gravitation, Physical and mathematical model of the fourth method [Electronic resource]. - access mode: http://www.ukraviaforum.com/index.php/topic,13470.0.html (date accessed: 09/06/2020)
4. Sebin AL Transformation of atmospheric heat. Physical basis of technology and indirect confirmation of its performance [Electronic resource]. - access mode: https://lenr.su/forum/index.php?threads/sozdanie-tmp-kljuchevaja-informacija.152/ (date of access: 09/06/2020)
5. Tolchin VN Video demonstration of the work of the inertia by the author of the invention [Electronic resource]. - access mode:
View: https://www.youtube.com/watch?v=pcEdpb-rIX4
(date accessed: 09/08/2020)
6. Shipov GI Personal site: experiments [Electronic resource]. - access mode: http://www.shipov.com/science.html (date accessed: 09/07/2020)
7. Sorokodum E. D. Personal site: Vortex-Oscillatory Technologies Ltd. [Electronic resource]. - access mode: http://www.vortexosc.com/index.php (date accessed: 09/08/2020)
8. Author's site: antigravity, engine, experiments with a flying saucer [Electronic resource]. - access mode: http://new-original-style.com.ua/pages/article2/antigravity/engine.htm (date accessed: 09/07/2020)

A source: http://sci-article.ru/stat.php?i=1601957819
Jan 2, 2020
Visit site
An Australian engineering pilot has actually made and flown what can only be described as a flying saucer. He does call it a UFO, a Useless Flying Object. It is perfectly round and flies well. He is now working on one that can carry a passenger as well as the pilot.
An Australian engineering pilot has actually made and flown what can only be described as a flying saucer. He does call it a UFO, a Useless Flying Object. It is perfectly round and flies well. He is now working on one that can carry a passenger as well as the pilot.
I may know you IRL, here are some things that without saying my identity that you might know

your discord is a potato