Does consciousness explain quantum mechanics?

Dec 29, 2022
1
0
10
Visit site
Quantum measurement
Quantum mechanics are the rules that govern the zoo of subatomic particles that make up the universe. Quantum mechanics tells us that we live in a fundamental nondeterministic world. In other words, at least when it comes to the world of tiny particles, it's impossible, no matter how clever scientists are in their experimental design or how perfectly they know that experiment's initial conditions, to predict with certainty the outcome of any experiment. Know the force acting on a proton? There's no set location where it's certain to be a few seconds from now — only a set of probabilities of where it could be.

Related: Spooky action is real: Bizarre quantum entanglement confirmed in new experiments

Advertisement

Thankfully, this indeterminism surfaces only in the subatomic world; in the macroscopic world, everything operates according to deterministic laws of physics (and no, we're not exactly sure why that split happens, but that's a problem for a different day).

When physicists perform an experiment on quantum systems (for example, trying to measure the energy levels of an electron in an atom), they're never quite sure what answer they'll get. Instead, the equations of quantum mechanics predict the probabilities of these energy levels. Once scientists actually conduct the experiment, however, they get one of those results, and all of a sudden the universe becomes deterministic again; once scientists know the energy level of the electron, for example, they know exactly what it's going to do, because its "wavefunction" collapses and the particle chooses a certain energy level.
Advertisement

This flip from indeterminism to determinism is outright odd, and there is no other theory in physics that operates the same way. What makes the act of measurement so special? Myriad quantum interactions happen in the universe all the time. So do those interactions experience the same kind of flipping even when no one is looking?


The role of consciousness
The standard interpretation of quantum mechanics, known as the Copenhagen interpretation, says to ignore all this and just focus on getting results. In that view, the subatomic world is fundamentally inscrutable and people shouldn't try to develop coherent pictures of what's going on. Instead, scientists should count themselves lucky that at least they can make predictions using the equations of quantum mechanics.

But to many people, that's not satisfying. It seems that there's something incredibly special about the process of measurement that appears only in quantum theory. This specialness becomes even more striking when you compare measurement to, say, literally any other interaction.
Advertisement

ADVERTISING

"For instance, in a faraway gas cloud, deep in the vastness of interstellar space, nobody is around; nobody is watching. If, within that gas cloud, two atoms bump into each other, this is a quantum interaction, so the rules of quantum mechanics should apply. But there is no "measurement" and no result — it's just one of trillions of random interactions happening every day, unobserved by humans. And so the rules of quantum mechanics tell us that the interaction remains indeterministic."
-
This is not an accurate understanding of quantum mechanics, its a pseudoscientific understanding that says quantum mechanics has anything to do with conacious observation. If two atoms crash into each other in space or in a lab they will decohere from their quantum mechanical state.
The thing that people say about quantum mechanics being reliant on measurement isn't about measurement itself, its about the fact that in order to measure something you have to bounce a beam of light into that thing or somehow force an interaction that decoheres, or breaks, that quantum mechanical state.
I'm kind of confused how an astrophysicist didn't know that about quantum mechanics. This idea overall doesn't even make sense. It implies that when a conscious entity observes something some part of its consciousness literally reaches out to that thing and then breaks its quantum mechanical state faster than the speed of light.
 
Dec 30, 2022
1
0
10
Visit site
It implies that when a conscious entity observes something some part of its consciousness literally reaches out to that thing and then breaks its quantum mechanical state faster than the speed of light.
[/QUOTE]
When you see something, for example, an exploding star, the signal is where you are--not where the event that produced the signal happened (long before humans existed). Likewise, when you see it is when you are then--not when it happened. No transluminal velocities are involved.
 
Dec 16, 2022
8
0
30
Visit site
Copenhagen smells like woo. Wave-function collapse-schmalapse. In the absence of a definitive test, I'm an MWI guy.

I don't know why people default to Copenhagen. Many-worlds sounds crazy? Not *as* crazy.
 
Jan 3, 2023
1
0
10
Visit site
Freeman Dyson wrote that "there is nothing else except these [quantum] fields."

On a mind/brain identity theory, such as we find in Russell, Feigl, Chalmers, and Lockwood et al., it seems fairly clear that our sensory fields must be quantum fields.

This idea would seem to go a long way toward explaining why these "two" fields reliably co-vary.
 
Question: if "differential equations" do not work at quantum level, does that mean that all those particles at that level have the same value?

And if that is true, how can consciousness learn to make distinctions between values?

There seems to be evidence of "differential" based processes at quantum level.

Quantum probability in decision making from ... - Naturehttps://www.nature.com › scientific reports › articles
by A Khrennikov · 2018 · Cited by 65 — The QP-approach to modeling of decision making is a purely operational approach describing probability distributions of observations' outputs.
Evolutionary Processes in Quantum Decision Theory - PMChttps://www.ncbi.nlm.nih.gov › articles › PMC7517214
by VI Yukalov · 2020 · Cited by 19 — The review presents the basics of quantum decision theory, with an emphasis on temporary processes in decision making. The aim is to explain the principal ...
Decision field theory - Wikipediahttps://en.wikipedia.org › wiki › Decision_field_theory
Decision field theory (DFT) is a dynamic-cognitive approach to human decision making. It is a cognitive model that describes how people actually make ...
‎Introduction · ‎Explaining context effects · ‎Neuroscience



Fig. 4. A map of the electric potential on the surface of a tubulindimer with C-termini tails.
Red regions represent positive charge,while blue regions indicate negative charge. The intensity of coloring indicates the local surface strength and polarity of the field. Figure prepared using MolMol (Koradi et al., 1996)
 
Last edited:
Microtubules as One-Dimensional Crystals: Is Crystal-Like Structure the Key to the Information Processing of Living Systems?

Abstract:
Each tubulin protein molecule on the cylindrical surface of a microtubule, a fundamental element of the cytoskeleton, acts as a unit cell of a crystal sensor. Electromagnetic sensing enables the 2D surface of microtubule to act as a crystal or a collective electromagnetic signal processing system.
We propose a model in which each tubulin dimer acts as the period of a one-dimensional crystal with effective electrical impedance related to its molecular structure. Based on the mathematical crystal theory with one-dimensional translational symmetry, we simulated the electrical transport properties of the signal across the microtubule length and compared it to our single microtubule experimental results. The agreement between theory and experiment suggests that one of the most essential components of any Eukaryotic cell acts as a one-dimensional crystal.

 
Jan 6, 2023
1
0
10
Visit site
As a lay person I've always thought Heisenberg's "Uncertainty Principle" was a bit hubristic. To believe our observation can affect the state of matter on the quantum level is like placing man in the role of a god. After all the Big Bang and universe all came about without humans and their consciousness.

As for Schrödinger's cat, the unfortunate creature is most likely going to pass due to the isotope of known half life, irregardless of someone peeking into the box or not.

The great French philosopher, Jean Paul Sartre, believed we 'reshape' our reality based on the way we want things to be and not the way they are. Might this not be what is occurring with reality vs. the Quantum State?
 
Jan 6, 2023
1
0
10
Visit site
Hello!
If our universe is flat (with zero curvature), then it can be smeared on the surface of a ball (soap bubble), then what inside expands this ball (dark matter and dark energy) is inaccessible to us.
Then, perhaps, based on the theory of the flat surface of the universe, by determining the top and bottom of our location in space, it is possible to determine with greater accuracy the superposition of particles in quantum mechanics.
Is this possible?
 
To believe our observation can affect the state of matter on the quantum level is like placing man in the role of a god. After all the Big Bang and universe all came about without humans and their consciousness.
Roger Penrose sees this exactly as the opposite.
He proposes that a quantum event creates a moment of consciousness.
This is how he and Stuart Hameroff have joined in a theory of ORCH OR (Orchestrated Objective Reduction) which proposes that microtubules in the brain are sensitive to quantum and that is the reason for human consciousness.

So, "observaton does not cause quantum collapse, but quantum collapse causes observation" !

like that logic.
 
Orchestrated objective reduction
Orchestrated objective reduction (Orch OR) is a biological philosophy of mind that postulates that consciousness originates at the quantum level inside neurons, rather than the conventional view that it is a product of connections between neurons. The mechanism is held to be a quantum process called objective reduction that is orchestrated by cellular structures called microtubules.
It is proposed that the theory may answer the hard problem of consciousness and provide a mechanism for free will.[1] The hypothesis was first put forward in the early 1990s by theoretical physicist Roger Penrose and anaesthesiologist and psychologist Stuart Hameroff. The hypothesis combines approaches from molecular biology, neuroscience, pharmacology, philosophy, quantum information theory, and quantum gravity.[2][3]

And the important role microtubules play in this scenario.
Microtubule computation

Clarifying the Tubulin bit/qubit - Defending the Penrose-Hameroff Orch OR Model (Quantum Biology) - YouTube
 
Last edited:
Aug 19, 2023
1
0
10
Visit site
A wild theory suggests that consciousness may explain quantum mechanics, by forcing the subatomic particles to choose one concrete outcome.

Does consciousness explain quantum mechanics? : Read more
I liked the question.
I felt an enormous spur in the awareness that, at the same moment, I could trick a small subatomic particle somewhere in my mind into thinking it was "choosing" a state that I could measure as an outside observer.
I would coin the term "observation of awareness of consciousness".
Can you imagine that?
 

Can Quantum Physics Be Used to Explain the Existence of Consciousness?

The answer involves determinism: the theory that humans have free will

By Andrew Zimmerman Jones

Updated on June 11, 2019

Consciousness and Quantum Physics

One of the first ways that consciousness and quantum physics come together is through the Copenhagen interpretation of quantum physics. In this theory, the quantum wave function collapses due to a conscious observer making a measurement of a physical system. This is the interpretation of quantum physics that sparked the Schroedinger's cat thought experiment, demonstrating some level of the absurdity of this way of thinking, except that it does completely match the evidence of what scientists observe at the quantum level.

One extreme version of the Copenhagen interpretation was proposed by John Archibald Wheeler and is called the participatory anthropic principle, which says that the entire universe collapsed into the state we see specifically because there had to be conscious observers present to cause the collapse. Any possible universes that do not contain conscious observers is automatically ruled out.

The Implicate Order

Physicist David Bohm argued that since both quantum physics and relativity were incomplete theories, they must point at a deeper theory. He believed that this theory would be a quantum field theory that represented an undivided wholeness in the universe. He used the term "implicate order" to express what he thought this fundamental level of reality must be like, and believed that what we are seeing are broken reflections of that fundamentally ordered reality.

Bohm proposed the idea that consciousness was somehow a manifestation of this implicate order and that attempting to understand consciousness purely by looking at matter in space was doomed to failure. However, he never proposed any scientific mechanism for studying consciousness, so this concept never became a fully-developed theory.

The Human Brain

The concept of using quantum physics to explain human consciousness really took off with Roger Penrose's 1989 book, "The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics." The book was written specifically in response to the claim of old school artificial intelligence researchers who believed that the brain was little more than a biological computer. In this book, Penrose argues that the brain is far more sophisticated than that, perhaps closer to a quantum computer. Instead of operating on a strictly binary system of on and off, the human brain works with computations that are in a superposition of different quantum states at the same time.

The argument for this involves a detailed analysis of what conventional computers can actually accomplish. Basically, computers run through programmed algorithms. Penrose delves back into the origins of the computer, by discussing the work of Alan Turing, who developed a "universal Turing machine" that is the foundation of the modern computer. However, Penrose argues that such Turing machines (and thus any computer) have certain limitations which he doesn't believe the brain necessarily has.

Quantum Indeterminacy

Some proponents of quantum consciousness have put forth the idea that quantum indeterminacy—the fact that a quantum system can never predict an outcome with certainty, but only as a probability from among the various possible states—would mean that quantum consciousness resolves the problem of whether or not humans actually have free will. So the argument goes, if human consciousness is governed by quantum physical processes, then it is not deterministic, and humans, therefore, have free will.

There are a number of problems with this, which are summed up by neuroscientist Sam Harris in his short book "Free Will," where he stated:

"If determinism is true, the future is set—and this includes all our future states of mind and our subsequent behavior. And to the extent that the law of cause and effect is subject to indeterminism—quantum or otherwise—we can take no credit for what happens. There is no combination of these truths that seems compatible with the popular notion of free will.The Double-Slit Experiment
One of the best-known cases of quantum indeterminacy is the quantum double slit experiment, in which quantum theory says that there is no way to predict with certainty which slit a given particle is going to go through unless someone actually makes an observation of it going through the slit. However, there is nothing about this choice of making this measurement which determines which slit the particle will go through. In the basic configuration of this experiment, there is a 50 percent chance the particle will go through either slit, and if someone is observing the slits, then the experimental results will match that distribution randomly.

The place in this situation where humans do appear to have some sort of choice is that a person can choose whether she is going to make the observation. If she does not, then the particle does not go through a specific slit: It instead goes through both slits. But that's not the part of the situation that philosophers and pro-free will advocates invoke when they're talking about quantum indeterminacy because that is really an option between doing nothing and doing one of two deterministic outcomes.

See: https://www.thoughtco.com/is-consciousness-related-to-quantum-physics-2698801

Quantum mechanics in the brain

Nature volume 440, page 611 (2006) Cite this article

Does the enormous computing power of neurons mean consciousness can be explained within a purely neurobiological framework, or is there scope for quantum computation in the brain?

The relation between quantum mechanics and higher brain functions, including consciousness, is often discussed, but is far from being understood. Physicists, ignorant of modern neurobiology, are tempted to assume a formal or even dualistic view of the mind–brain problem. Meanwhile, cognitive neuroscientists and neurobiologists consider the quantum world to be irrelevant to their concerns and therefore do not attempt to understand its concepts. What can we confidently state about the current relationship between these two fields of scientific inquiry?

All biological organisms must obey the laws of physics, both classical and quantum. In contrast to classical physics, quantum mechanics is fundamentally indeterministic. It explains a range of phenomena that cannot be understood within a classical context: the fact that light or any small particle can behave like a wave or particle depending on the experimental setup (wave–particle duality); the inability to simultaneously determine, with perfect accuracy, both the position and momentum of an object (Heisenberg's uncertainty principle); and the fact that the quantum states of multiple objects, such as two coupled electrons, may be highly correlated even though the objects are spatially separated, thus violating our intuitions about locality (entanglement).

Major philosophical and conceptual problems surround the process of making measurements in quantum mechanics. To illuminate the paradoxical nature of superposition — that is, the fact that particles or quantum bits (qubits) are allowed to exist in a superposition of states — Schrödinger proposed a celebrated thought experiment: a sealed box containing the quantum superposition of both a dead and a live cat. When an observer peers inside the box, measuring its content, the wave function, which describes the probability that the system will be found in any one particular state, is said to collapse, and the system will be found in one or the other state with known probability.

The role of the conscious observer in this measuring process has been hotly debated since the early days of quantum mechanics. It is fair to say, however, that consciousness has been only a place holder in a chain of mathematical formulae, without much relevance to the study of neural circuits in intact organisms. Most quantum physicists view the brain as a classical instrument.
41586_2006_Article_BF440611a_Figa_HTML.jpg

A thought experiment involving an observer looking at a superimposed quantum system with one eye, and at a succession of faces with the other, challenges the idea that a quantum framework is needed to explain consciousness. Credit: Q. PAUL/AIP

The critical question we are concerned with here is whether any components of the nervous system — a 300-degrees Kelvin tissue strongly coupled to its environment — display macroscopic quantum behaviours, such as quantum entanglement, that are key to the brain's function.

Specific molecular machines and proteins have been proposed to implement quantum computations. The best known of such proposals is Penrose and Hameroff's hypothesis that the tubulin components of microtubules, filamentous protein polymers that form the cytoskeleton of cells, implement quantum computations.

Lessons from quantum computers

When kings build, their followers team up in international journals and conferences, confusing the general public about the distinction between science and poetry. But large quantum systems are notoriously difficult to analyse rigorously, except in highly idealized models or limits. Estimates based on the same unrealistic one-particle model, applied to trillions of interacting particles, show discrepancies of ten orders of magnitude in the work of different authors. It is therefore better to turn to hard experimental realities and abstract computational theory to find the neural correlates of quantum processes in the brain.

Quantum computations are difficult to implement. In its simplest version, a quantum computer transforms the state of many two-dimensional qubits using a reversible, linear, probability-conserving mapping via a sequence of externally controllable quantum gates into a final state with a probabilistic outcome. Quantum computation seeks to exploit the parallelism inherent in entanglement by assuring that the system is very likely to converge on the computationally desirable result.

This requires that the qubits are well isolated from the rest of the system. Coupling the system to the external world is necessary for the preparation of the initial state (the input); for the control of its evolution; and for the actual measurement (the output). However, all these operations introduce ‘noise’ into the computation (decoherence). Although some decoherence can be compensated for by redundancy and other fault-tolerant techniques, too much is fatal.

In spite of an intensive search by many laboratories, no scalable large quantum computers are known. The record for quantum computation is the factoring of the number 15 by liquid-state nuclear magnetic resonance (NMR) techniques. Qubits and a set of universal quantum gates have been proposed in many different implementations, but all solutions have serious drawbacks: photons interact only weakly with one another; nuclear spins in individual molecules are few in number in current devices, as are trapped atoms or ions. This paints a desolate picture for quantum computation inside the wet and warm brain.

Although brains obey quantum mech-anics, they do not seem to exploit any of its special features. Molecular machines, such as the light-amplifying components of photoreceptors, pre- and post-synaptic receptors and the voltage- and ligand-gated channel proteins that span cellular membranes and underpin neuronal excitability, are so large that they can be treated as classical objects. (Their relative molecular masses range from 20,000 to 200,000; the two main dimers of tubulin are around 55,000.)
Two key biophysical operations underlie information processing in the brain: chemical transmission across the synaptic cleft, and the generation of action potentials. These both involve thousands of ions and neurotransmitter molecules, coupled by diffusion or by the membrane potential that extends across tens of micrometres. Both processes will destroy any coherent quantum states. Thus, spiking neurons can only receive and send classical, rather than quantum, information. It follows that a neuron either spikes at a particular point in time or it does not, but is not in a superposition of spike and non-spike states.

The power of quantum mechanics is often invoked for problems that brains solve efficiently. Computational neuroscience is a young field and theories of complex neural systems, with all the variability of living matter, will never reach the precision of physical laws of well-isolated simple systems. It has already been demonstrated, however, that many previously mysterious aspects of perception and action are explainable in terms of conventional neuronal processing.

Two examples are models for the rapid recognition of objects (for example, animals or faces) in natural scenes, with performance approaching that of human observers, and the attentional selection of objects in cluttered images. The necessary mathematical operations — such as changes in synaptic weights, evaluating the inner product between presynaptic activity and synaptic weight, multiplication and stationary nonlinearities — are available to neurons. Indeed, there is an embarras de richesse of computational primitives implemented by synapses, dendrites and neurons. That is not to suggest that we understand how brains compute. But so far, there seems to be no need for quantum skyhooks.

The reason for the unprecedented computational power of nervous systems is their high degree of parallelism. For instance, filter-like operations in retinal or cortical cells in the visual stream are performed simultaneously on an entire image and thus are not limited by the tyranny of a single processor. Furthermore, unlike the von Neumann architecture of the programmable digital computer, the brain intermixes memory elements in the form of modifiable interconnections within the computational substrate, the neuronal membrane. Thus, no separate memory ‘fetch’ and ‘store’ cycles are necessary.

Much of the hope that quantum mechanics works in the brain is pinned to the supposition that quantum algorithms, which are much more powerful than conventional algorithms (based on classical physics), are implemented in the nervous system. The most famous of these is Shor's procedure for factoring large integers for data encryption. However, in the past decade no quantum algorithm of similar power and applicability to Shor's has been found. And factoring large numbers is not something for which the brain has much use.

Why should evolution have turned to quantum computation, so fickle and capricious, if classical neural-network computations are evidently entirely sufficient to deal with the problems encountered by nervous systems?

Food for thought

At this point, intrepid students of the mind point to qualia, the constitutive elements of consciousness. The subjective feelings associated with the redness of red or the painfulness of a toothache are two distinct qualia. As long as it remains mysterious how the physical world gives rise to such sensations, could one of the more flamboyant interpretations of quantum mechanics explain consciousness? Most provocatively, Roger Penrose has claimed that brains can evaluate noncomputable functions; that this ability is related to consciousness; that both this ability and consciousness require a yet-to-be-discovered theory of quantum gravity and that microtubules are the sites of the associated quantum gates.

The problem of consciousness and its neuronal correlates is beginning to emerge in outlines. The content of consciousness is rich and highly differentiated. It is associated with the firing activity of a very large number of neurons spread all over the cortex and associated satellites, such as the thalamus. Thus, any one conscious percept or thought must be expressed in a wide-flung coalition of neurons firing together. Even if quantum gates exist within the confines of neurons, it remains totally nebulous how information of relevance to the organism would get to these quantum gates. Moreover, how would it be kept coherent across the milli- and centimetres separating individual neurons when synaptic and spiking processes, the primary means of neuronal communication on the perceptual timescale, destroy quantum information?

It is far more likely that the material basis of consciousness can be understood within a purely neurobiological framework, without invoking any quantum-mechanical deus ex machina.

We challenge those who call upon consciousness to carry the burden of the measurement process in quantum mechanics with the following thought experiment. Visual psychology has caught up with magicians and has devised numerous techniques for making things disappear. For instance, if one eye of a subject receives a stream of highly salient images, a constant image projected into the other eye is only seen infrequently. Such perceptual suppression can be exploited to study whether consciousness is strictly necessary to the collapse of the wave function.

Say an observer is looking at a super-imposed quantum system, such as Schrödinger's box with the live and dead cat, with one eye while his other eye sees a succession of faces (see figure). Under the appropriate circumstances, the subject is only conscious of the rapidly changing faces, while the cat in the box remains invisible to him. What happens to the cat? The conventional prediction would be that as soon as the photons from this quantum system encounter a classical object, such as the retina of the observer, quantum superposition is lost and the cat is either dead or alive.

This is true no matter whether the observer consciously saw the cat in the box or not. If, however, consciousness is truly necessary to resolve the measurement problem, the animal's fate would remain undecided until that point in time when the cat in the box becomes perceptually dominant to the observer. This seems unlikely but could, at least in principle, be empirically verified.

The empirical demonstration of slowly decoherent and controllable quantum bits in neurons connected by electrical or chemical synapses, or the discovery of an efficient quantum algorithm for computations performed by the brain, would do much to bring these speculations from the ‘far-out’ to the mere ‘very unlikely’. Until such progress has been made, there is little reason to appeal to quantum mechanics to explain higher brain functions, including consciousness.

FURTHER READING

Hepp, K. in Quantum Future: Lecture Notes in Physics (eds Blanchard, P. & Jadczyk, A.) 517, 92–104 (1998).
Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford Univ. Press, New York, 1999).
Koch, C. The Quest for Consciousness: A Neurobiological Approach (Roberts, Colorado, 2004).
Nielsen, M. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2002).
Penrose, R. The Emperor's New Mind (Oxford Univ. Press, Oxford 1989).

Author information​

  1. the Division of Biology and the Division of Engineering and Applied Science, 216-76, California Institute of Technology, Pasadena, 91125, California, USA
    Christof Koch
  2. the Institute of Neuroinformatics, the University of Zürich and ETH, Zürich, Switzerland
    Christof Koch & Klaus Hepp
See: https://www.nature.com/articles/440611a

Quantum waves are not vibrations of anything physical. Matter has dissolved into a nonmaterial wave of probability, describing not the actual physical properties of the particles, but only their probable, or potential properties. So an atomic orbit is not an actual path followed by a material particle, but rather a wave of possibility for the particle to be found in different locations. And rather than describing the movement of actual particles as Newton's laws did, the quantum laws describe the potentiality of the movement of these waves. The actual particles are gone—only their possible locations remain. Solid substance has evaporated into its wave functions, describing only the probabilities for particles to appear in a particular location. Bruza and Whang, writing about quantum cognition in Trends in cognitive sciences (2015) explain how—as long as we don’t make a decision—we have endless possibilities in front of us, but every one of those possibilities disappear once we make a decision to follow a specific route into the future.
Hartmann352
 
For write4u:

From:
Quantum mechanical aspects of cell microtubules: science fiction or realistic possibility?

Nick E Mavromatos 2011 J. Phys.: Conf. Ser. 306 012008

Cavity Model for Microtubules (MT) revisited: quantum coherence and dissipation-free energy transfer in biological cells

Microtubules (MT) [12] are paracrystalline cytoskeletal structures that constitute the fundamental scaffolding of the cell. They play a fundamental rˆole in the cell mitosis and are also believed to play an important roˆle in the transfer of electric signals and, more general, of energy in the cell. They are cylindrical structures (c.f. fig. 5) with external cross section diameter of about 25 nm and internal diameter 15 nm. A moderately long MT may have a length of the order of a few μm = 10−6 m. Their exterior walls consist of tubulin protein units (c.f. fig. 6). The tubulin protein dipers are characterized by two hydrophobic pockets, of length 4 nm = 4 · 10−9 m each (the total length of a dimer being about 8 nm), and they come in two conformations, α− and β− tubulin, depending on the position of the unpaired charge of 18 e relative to the pockets.

The tubulin also has an electric dipole moment. A complete electron microscope chartography of the tubulin protein dimer is available today at 3.5 Angstro ̈m resolution [23]. This allows for theoretical modelling and computer calculations of the electric dipole moment of the dimers as well as of the entire MT [24, 25]. Current simulations have shown that the bulk of the tubulin’s electric dipole moment lies on an axis perpendicular to the protofilament axis of the MT and only a fifth of the total tubulin dipole moment lies parallel to it (see also discussion in section 4). However, for the purposes of constructing a (rather simplified) model of MT dynamics [22, 14] that captures the essential features of dissipation-free energy and information transfer, it suffices to observe that the two conformations of the tubulin dimer differ by a relative angle (of about 290) relative to the protofilament axis in the monomers orientation. This will have implications on the electric dipole moment of the monomer, as indicated in fig. 6. In this simplified picture, one ignores the components of the electric dipole perpendicular to the protofilament’s axis, and concentrates rather on a description of the array of the dipole oscillators along the MT protofilaments by a single effective degree of freedom, namely the projection, un, on the MT cylinder’s axis of the displacement of the n-th tubulin monomer from its equilibrium position. The strong uniaxial dielectric anisotropy of the MT supports this picture, which enables one to view the MT as one-space dimensional crystals.

This rather simplified geometry captures essential features of the MT, insofar as soliton formation and dissipation-free energy transfer are concerned. It is understood, though, that microscopic detailed simulations of the complete MT, which recently started becoming available [26], should eventually be used in order to improve the theoretical modelling of MT dynamics [22, 14] and allow for more accurate studies of their possible quantum entanglement aspects.

Classical solitons in MT and dissipation-free energy transfer

Based on such ingredients, the authors of [22] have attempted to discuss a classical physics model for dissipationless energy transfer across a MT, by conjecturing ferroelectric properties.

Current simulations have shown that the bulk of the tubulin’s electric dipole moment lies on an axis perpendicular to the protofilament axis of the MT and only a fifth of the total tubulin dipole moment lies parallel to it (see also discussion in section 4). However, for the purposes of constructing a (rather simplified) model of MT dynamics [22, 14] that captures the essential features of dissipation-free energy and information transfer, it suffices to observe that the two conformations of the tubulin dimer differ by a relative angle (of about 290) relative to the protofilament axis in the monomers orientation. This will have implications on the electric dipole moment of the monomer, as indicated in fig. 6. In this simplified picture, one ignores the components of the electric dipole perpendicular to the protofilament’s axis, and concentrates rather on a description of the array of the dipole oscillators along the MT protofilaments by a single effective degree of freedom, namely the projection, un, on the MT cylinder’s axis of the displacement of the n-th tubulin monomer from its equilibrium position. The strong uniaxial dielectric anisotropy of the MT supports this picture, which enables one to view the MT as one-space dimensional crystals.

See: https://iopscience.iop.org/article/10.1088/1742-6596/306/1/012008/pdf

See also: https://www.sciencedaily.com/releases/2014/01/140116085105.htm

Hartmann352
 
Does the enormous computing power of neurons mean consciousness can be explained within a purely neurobiological framework, or is there scope for quantum computation in the brain?
I believe that consciousness is caused by the process of cognition by the brain when it compares incoming data with memory.
According to Anil Seth, the brain forms an expectation (a best guess) of what the incoming data represents as compared to the data in memory.
I believe that the comparison of a "known" data set brings a moment of cognition when the comparison causes a (directed) quantum collapse and this in turn causes the mind to experience a moment of awareness.
I believe this would agree with ORCH OR if taken in context.

In this little lecture, Anil Seth explains in very simple terms how the brain actually processes incoming data and how it can be fooled as well as adapt to new information that creates a bridge between incoming data and stored data.
View: https://www.youtube.com/watch?v=lyu7v7nWzfo

It seems to me that somewhere in this process the brain has learned to create an internal visual experience of comparison of the streaming incoming data with what the rain knows as being true.
 
Last edited:
write4u :

Your ideas on consciousness will be further fleshed out if you take a look at this paper by Anil K. Seth and Tim Bayne:

Theories of consciousness

By Anil K. Seth & Tim Bayne

03 May 2022

Recent years have seen a blossoming of theories about the biological and physical basis of consciousness. Good theories guide empirical research, allowing us to interpret data, develop new experimental techniques and expand our capacity to manipulate the phenomenon of interest. Indeed, it is only when couched in terms of a theory that empirical discoveries can ultimately deliver a satisfying understanding of a phenomenon. However, in the case of consciousness, it is unclear how current theories relate to each other, or whether they can be empirically distinguished. To clarify this complicated landscape, we review four prominent theoretical approaches to consciousness: higher-order theories, global workspace theories, re-entry and predictive processing theories and integrated information theory. We describe the key characteristics of each approach by identifying which aspects of consciousness they propose to explain, what their neurobiological commitments are and what empirical data are adduced in their support. We consider how some prominent empirical debates might distinguish among these theories, and we outline three ways in which theories need to be developed to deliver a mature regimen of theory-testing in the neuroscience of consciousness. There are good reasons to think that the iterative development, testing and comparison of theories of consciousness will lead to a deeper understanding of this most profound of mysteries.

See the paper in its entirety at: https://www.nature.com/articles/s41583-022-00587-4

Hartmann352